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Società Italiana di Fisica
Springer-Verlag 2000

P-adic numbers and replica symmetry breaking

G. Parisi1 and N. Sourlas2,a
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Abstract. The p-adic formulation of replica symmetry breaking is presented. In this approach ultrametri-
city is a natural consequence of the basic properties of the p-adic numbers. Many properties can be simply
derived in this approach and p-adic Fourier transform seems to be a promising tool.

PACS. 05.20.-y Classical statistical mechanics – 64.70.Pf Glass transitions – 75.10.Nr Spin-glass and
other random models

1 Introduction

In the replica approach to disordered systems one usually
introduces a matrix Qa,b which is the stationary point of
a free energy F [Q]; the matrix is a zero by zero matrix,
with zero elements on the diagonal [1]. Such a matrix is
constructed as the n→ 0 limit of a normal matrix with n
components.

In the mean field approach one looks for stable (or
marginally stable) saddle points of the free energy. When
the replica symmetry is spontaneously broken, as it hap-
pens in spin glasses, one assumes that the saddle point
is given by a matrix Q constructed in a hierarchical way,
which corresponds to breaking the replica symmetry group
(the permutation group of n elements) in a peculiar way
[2,3]. The aim of this note is to expose some hidden alge-
braic properties of this matrix and to show that the whole
construction may be simply done using p-adic numbers.

In this approach the ultrametric properties of the ma-
trix Q [4,5] arise naturally from the ultrametric properties
of the p-adic numbers. Although we do not obtain new re-
sults in this way, we hope that this reformulation may be
a useful starting point for simplify some of the long com-
putations involved in the evaluation of the corrections to
the saddle point approximation.

In Section 2 will be present the basic properties of
the p-adic construction and show its equivalence to the
usual hierarchical construction. In the next section the
limit n→ 0 is performed in a simple way. In Section 4 we
present an alternative and more interesting procedure for
doing the limit n→ 0, where we connect this approach to
standard p-adic analysis. In the next section we show the
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advantages of using the p-adic Fourier transform. Finally
there are two appendices, the first dedicated to the foun-
dations of p-adic analysis, the second to the basic prop-
erties of the Fourier transform [6,7]. Both appendices can
be skipped by readers experts on p-adic analysis.

2 The p-adic construction of the matrix Q

We start the construction of the matrix Q by considering
a number p (which for simplicity we suppose to be a prime
number) and by assuming that n = pL for some value of L.
We are going to construct the matrix Q for integer L and
p in a specific way which we will discuss later. The limit
n → 0 will be done at the end. The matrix Q enters in
the evaluation of the free energy in spin glasses and related
models in the saddle point approximation. Here we do not
address the point of the evaluation of the free energy and
we only consider the construction of the matrix Q.

Eventually n = pL must go to zero and we can follow
two options in order to realise this goal:

a) We take a value of p greater than one and we send
L to minus infinity. Eventually we may do an analytic
continuation in p to non integer values of p.

b) We first do an analytic continuation in p to non
integer values of p. We take a value of p less than one and
we send L to plus infinity.

In both cases one obtains the limit n → 0. The two
constructions are roughly equivalent. It seems that the
second one is more simple to work with, however for ped-
agogical reasons we will start by presenting the first one
in Section 3, while the second one will be presented in
Section 4.

The first steps are common to both strategies. The
construction of the matrix Q for integer p and L can
be done as follows. We assume that the matrix Qa,b
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is of the form

Qa,b = Q(a− b), (1)

where Q(k) = Q(−k) (symmetric matrix) and Q(k+n) =
Q(k). This choice restricts very much the form of the ma-
trix and shows an explicit symmetry of this parameteriza-
tion (i.e. translational invariance in internal space). The
condition Q(0) = 0 implies that the elements on the diag-
onal are equal to zero.

The second step consists in assuming that the function
Q(k) is a function of the p-adic norm |k|p. The appendices
provide a brief introduction to peadic analysis.

In other words we suppose that

Q(k) = q(|k|p). (2)

This corresponds to setting

Qa,b = qi ≡ q(p−i), if |a− b|p = p−i. (3)

Before performing the limit n → 0 it is convenient
to compare our approach with the standard hierarchical
construction.

In the usual case [2] one introduces a sequence ofK+2
numbers mi, with m0 = 1 and mK+1 = n, such that mi−1

divides mi for i = 1,K + 1. One sets for a 6= b:

Qa,b = qi if I(a/mi) 6= I(b/mi)

and

I(a/mi+1) = I(b/mi+1), (4)

where the function I(z) is the integer part of z, i.e. the
largest integer less or equal to z.

Let us consider the special case where the mi are
given by

mi = pi. (5)

We want to show that the matrix Q obtained in this way
coincides, after a permutation with the matrix Q con-
structed before with K+1 = L. The proof is rather simple.
We associate to the index a the L digits of a−1 in base p:

a = 1 +
∑
i=0,K

aip
i. (6)

These digits form a L dimensional vector with components
in the range 0 − (p − 1). The hierarchical construction
corresponds to set Qa,b = qi if aj = bj for all j ≥ i and
ai−1 6= bi−1.

We now associate to an index a its transpose (aT ),
which is obtained by writing its digits in the inverse order:

aT = 1 +
∑
i=0,K

aip
(K−i). (7)

The previous condition becomes that the K − i less
significative digits of aT and bT do coincide, and the

(K − i+ 1)th digit differs. This last condition may be re-
stated by saying that a−b is a multiple of p(K−i) but not of
p(K−i+1), i.e. |a− b|p = p−(K−i). Apart from a reshuffling
of the indices, i.e. a permutation, the usual construction
is equivalent the p-adic construction presented before.

Generally speaking it is possible to prove that indepen-
dently from the condition in equation (5), after a similar
reshuffling of the indices, the hierarchical matrix Q (de-
fined in Eq. (4)) can always be written under the form
of equation (1). It is likely that many of the unexpected
properties of the hierarchical construction arise from the
possibility of choosing an ordering of the indices in such a
way that the hierarchical matrix is invariant of under the
transformation a→ a+1. This invariance implies that the
elements of one line are the permutation of the elements
of another line, however the converse is not true.

3 The n→ 0 limit

We can now perform the n→ 0 limit. We will firstly follow
the strategy a).

This limit can be reached by sending L to −∞. The
continuation of the usual formulae from positive to neg-
ative L can be done if we introduce the quantities qi for
non positive i.

For example let us consider the sum of the elements of
a line of the matrix. In order to perform the n→ 0 limit
we slightly change the notation of the previous section and
we set

Qa,b = qi, if |a− b|p = pL−i. (8)

We easily get that the sum is given∑
b

Qa,b =
∑
i=1,L

(p− 1)pi−1qi. (9)

Indeed the number of integers k such that |k|p ≤ p−j

(i.e. the volume of the p-adic sphere) is given by pL−j

and therefore the number of integers k such that |k|p =
p−j (i.e. the volume of the p-adic shell) is given by (p −
1)pL−j−1.

We are free to write the last equation as∑
i=−∞,L

(p− 1)pi−1qi −
∑

i=−∞,0
(p− 1)pi−1qi, (10)

by introducing the extra parameters qi for i < 1, which
are irrelevant for positive L.

The analytic continuation to negative L can be now
trivially done. In the limit L→ −∞, the first term disap-
pears and we get∑

b

Qa,b →
∑

i=−∞,0
(pi−1 − pi)qi. (11)

A similar procedure can be followed in order to com-
pute other functions of the matrix Q. By comparing
the previous equation with the usual ones, we see that
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we obtain the hierarchical formulation where a function
q(x) is introduced, with the extra constraint that q(x)
is piecewise constant with discontinuities at x = p−i. The
usual formulation, where q(x) is a continuous function can
be obtained by analytic continuation in p up to the point
p = 1+.

By performing the explicit computations similar re-
sults are obtained for the other quantities and it is possible
to show that the usual approach is recovered.

4 The upsidedown world

In the other possible approach to the n → 0 limit (b),
we firstly do an analytic continuation in p to values less
than one and only later we send L → +∞ in such a way
that pL → 0. At a later stage we are free to send p→ 1−
in order to reach the continuous limit. In this way we
get formulae quite similar to the previous one, with the
advantage that only the qi with positive i are needed.

In this approach one obtains that the function q(x) is
given by

q(pi) = qi, (12)

where the index i ranges from 0 to +∞ in such a way that
when p → 1−, x ≡ pi spans the interval 0-1. The formu-
lae one obtains in this approach for p < 1 coincide with
the formulae obtained with the formalism of the previous
section (with the substitution of p with p−1).

The advantage of this procedure is that we obtain for-
mulae that are very similar to those used in the p-adic
integral and that are well known to mathematicians. The
strategy to prove these formulae is quite similar and there-
fore one can use some of the well known results in this
field.

In the region where p < 1 it may be convenient to
introduce the notation:

|k| = |k|p
pL
· (13)

In this way |k| belongs to the interval 0 − 1, with the
exception |0| = ∞. In the limit where p → 1−, |k| spans
the interval 0-1. Equation (12) can thus written as

Q(a− b) = q(|a− b|). (14)

Let us apply this strategy to the computation of the
sum of the elements of a line of the matrix. We find that

lim
L→∞

∑
a=1,pL

Q(a− b) =
∑
i=1,∞

(p− 1)pi−1qi. (15)

For p < 1 the previous equation can be written as∑
a=1,n

Q(a− b) =
∑
i=1,∞

(1− p)pi−1qi, (16)

while for p > 1 the r.h.s. becomes proportional to the
p-adic integral which is denoted as∫

p

daQ(a). (17)

With some abuse of notation we denote for p < 1

lim
n→0

∑
a=1,n

Q(a− b) =
∫ ′
p

daQ(a), (18)

where the sign ′ over the integral
∫ ′
p denotes that the value

zero is excluded from the integration range. We must note
that the measure of the integral is normalized to −1. In a
similar way we can use the notation

lim
L→∞

∑
b,c=1,pL

F (|a− b|, |b− c|, |c− a|) =

∫
p

db daF (|a− b|, |b− c|, |c− a|). (19)

For p > 1 we obtain the usual p-adic integral (apart from
a normalization factor). The results for p < 1 can be ob-
tained using the same steps as in Appendix B.

We can do the computation in the interesting case
where the sum is restricted to all different indices. We
have to compute

lim
L→∞

∑
b,c=1,pL;a6=b,a6=c,b6=c

F (|a− b|, |b− c|, |c− a|)

≡ lim
L→∞

∑
b,c=1,pL

′
F (|a− b|, |b− c|, |c− a|) (20)

=
∫
p b,c=1,pL;a6=b,a6=c,b6=c

db dcF (|a− b|, |b− c|, |c− a|)

=
∫ ′
p

da dbF (|a − b|, |b − c|, |c − a|), (21)

where we denote by
∑ ′

the sum restricted to the case of
all different indices.

In the same way we could define

(−1)M lim
n→0

1
n

∑
a1,a2,...aM

F [a] ≡
∫ ′

da1 da2 ... daM , F [a]

(22)

where p is less than 1 and the sum is done on all different
indices. The factor (−1)M has the effect of giving a posi-
tive result for the integral. Generally speaking in this way
the evaluation of sums can be reduced to the computation
of quantities that are very similar to the corresponding p-
adic integral.

For example let us use this strategy to compute

∫ ′
p

da dbF (|a− b|, |b− c|, |c− a|). (23)
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The application of the previous formulae tells us that the
integral is given by

∑
b,c,b6=a,c 6=a,b6=c

F (|a− b|, |b− c|, |c− a|)

=
∑
i,k,l

µ(i, k, l)F (pk, pi, pl)

=
∑

i,k;i<k

(pi+1 − pi)(pk+1 − pk)[F (pk, pk, pi)

+ F (pk, pi, pk) + F (pi, pk, pk)]

+
∑
i

(pi+1 − pi)(pi+1 − 2pi)F (pi, pi, pi). (24)

The proof can be obtained using the same strategy as
in the Appendix A for computing the measure of three
intersecting p-adic shells.

Finally in the continuum limit where p goes to 1− one
get the formula

∑
b,c,b6=a,c 6=a,b6=c

F (|a− b|, |b− c|, |c− a|) =∫
dxdyθ(x− y)[F (x, x, y) + F (x, y, x) + F (y, x, x)]

+
∫

dx x F (x, x, x). (25)

The same formula could be simply written as

∑
b,c,b6=a,c 6=a,b6=c

F (|a− b|, |b− c|, |c− a|) =∫
dxdydxµ(x, y, x)F (x, y, z)

µ(x, y, z) = θ(x− y)δ(x− z) +θ(x− z)δ(x− y)
+ θ(y − x)δ(y − z) + xδ(x− y)δ(x− z). (26)

It is important to note that the ultrametricity inequal-
ity works at reverse in the region p < 1 and consequently
also in the limit p→ 1−. This is in agreement with the fact
that 1− x, not x, has the physical meaning of distance.

After some work one can find simple rules for generic
sums of the type

−1
n

∑
a,b,c,d

′
F (a, b, c, d) =

∫ ′
p

F (a, b, c, d) (27)

where F depends only on the p-adic distance and all in-
dices are different [9]. In the case where the function is

symmetric one finds that in the limit p→ 1−

∫ ′
p

F (a, b, c, d) =∫
x<y<z

dx dy dzF ||a−b|=|a−c|=|a−d|=x,|b−c|=|b−d|=y,|c−d|=z

+ 11 permutations

+
∫
x<y;x<z

dx dy dzF ||a−b|=z,|b−c|=|b−d|=|a−c|=|a−d|=x,|c−d|=y

+ 2 permutations

+
∫
x<y

dx dy x F ||a−b|=y,|b−c|=|b−d|=|a−c|=|a−d|=x=|c−d|=x

+ 5 permutations

+
∫
x<y

dx dy y F ||a−b|=|b−c|=|a−c|=y,|b−d|=|a−d|=x=|c−d|=x

+ 3 permutations

+2!
∫

dx x2F (|a−b|=|a−c|=|a−d|=|b−c|=|b−d|=|c−d|=x), (28)

where the formula for the intersection of 4-p-adic sphere of
the same radius has been crucial to obtain the last term.

If we apply the same strategy to more complicated
sums we can find the formula of reference [8], where the
result is written as sum over all possible trees, with a
specific integral associated to a given tree.

5 Using the p-adic Fourier transform

An interesting application of this approach can be done
to the formula for the product of two matrices A and B:

Ci,k =
∑
j

Ai,jBj,k. (29)

If the matrices have the form discussed here one finds that
the previous formula can be written as a convolution

C(i− k) =
∑
j

A(i− j)B(j − k) =
∑
j

a(|i− j|)b(|j − k|).

(30)

Finally one finds using the previous formulae that

c(|i|) =
∫
p

dk a(|i− k|)b(|k|), (31)

which using the rules of p-adic integral after performing
the limit p→ 1− can be written as:

c(x) =
∫ 1

x

dy(a(y)b(x) + a(x)b(y))

+
∫ 1

x

dya(y)b(y) + x a(x)b(x). (32)



G. Parisi and N. Sourlas: P-adic numbers and replica symmetry breaking 539

Convolutions can be strongly simplified in Fourier space.
In principle we can just do ordinary Fourier transform,
where the momentum q is in the interval (−π , π), however
it is convenient to take into account the p-adic nature of
the functions we consider.

We can start from the analysis leading to formula (B.8)
of Appendix B. Generalizing the computations to the case
where p < 1 and performing the continuum limit, one
finds that the p-adic Fourier transform1 of a function
A(k) = a(|k|) is a function A[M ] = a[y], defined for y
in the interval 0-1, where y = |M |−1. One must be care-
ful in removing the factor 1

pL in the normalization of the
Fourier transform, which would be harmful here.

Equation (B.8) may be transformed to

A[M ]||M|p=pj =∑
k=0,j

(
p−k+L(1− 1/p)aL−k

)
− p−j+LaL−j +A(0). (33)

Let us define (for p < 1) the function

a[y] = A[M ]||M|p=pLy. (34)

The function a[y] is defined only for y of the form p−k for
integer k. With this definition one finally obtains that

a[y] =
∑
k=0,j

pk(1− 1/p)a(p−k)− pja(p−j) +A(0). (35)

The final formulae in the continuum limits are

a[y] = a(∞)−
∫ 1

y

dxa(x) − ya(y),

a[∞] = a(∞)−
∫ 1

0

dxa(x), (36)

where we use the apparently strange notation a(∞) =
A(0) and a[∞] = A[0].

The inverse Fourier transform formulae simply read

a(x) = a[∞]− a[0] +
∫ x

0

dy
y

da[y]
dy

,

a(∞) = a[1]. (37)

These relations become simpler in differential form.
For example one gets:

x a′(x) = a′[x]. (38)

This differential relation is equivalent to the integral rela-
tion in equation (36, 37) for obtaining the Fourier trans-
form if they are complemented by the value of the Fourier
transform in a given point. A possible choice is

a[1] = a(∞)− a(1).

1 We use the same notation as the appendix and we use the
square parenthesis, [·], to denote the Fourier transform.

With some work one can verify that the multiplication
of two matrices becomes the simple multiplication of their
Fourier transform [10]:

c[y] = a[y] b[y]. (39)

Indeed diffentiating equation (32) one finds

c′(y) = a′(x)(
∫ 1

x

dyb(y) + xb′(x))

+ b′(x)(
∫ 1

x

dya(y) + xa′(x)). (40)

The function a[y] was already introduced in refer-
ence [10] in order to solve the inversion problem, although
its p-adic nature was not recognized. Also the usual pro-
cedure of simplifying the saddle point equations by differ-
entiating them correspond to consider the p-adic Fourier
transform.

We could also consider the problem of computing the
inverse of a matrix Q, i.e. of finding matrix R, such that∑

c

Qa,cRc,b = δa,b. (41)

It is not a surprise that we find the Fourier transform of
the matrix R is simply the inverse of the Fourier transform
of the matrix Q:

q[y] = 1/r[y]. (42)

An extremely important problem consists in the com-
putation of the inverse of the Hessian coming from the
fluctuation around the saddle point. Here one has to solve
the equation ∑

e,f

Ma,b;e,fGe,f ;c,d = δa,b;c,d. (43)

This inversion is not a simple job and rather complex com-
putations have been done [11,12]. However the final for-
mulae are remarkable simple. Although we are not able at
the present moment to derive these formulae in the frame-
work of the p-adic formalism it may be useful to show that
they have a very simple interpretation in terms of p-adic
Fourier transform [7].

We will consider here only the so called replicon sector
for which the results are simpler than in the other sectors.
In fact it was shown in reference [7] that in the “longi-
tudinal sector” one needs a generalization of the p-adic
Fourier transform presented here. This generalization is
presented in reference [7]. We restrict our analysis to the
region where |a − b| = z > |a− c| = x1, |b− d| = x2 > z.
In this region ultrametricity implies that z = |a − d| =
|b− c| = |c− d|. Both M and G are functions of x1, x2, z
only and we write them as Mz(x1, x2) and Gz(x1, x2). In
the same way we denote by GzR(x1, x2) the replicon con-
tribution to G, where the precise definition of the replicon
can be found in the original papers [11,12].



540 The European Physical Journal B

Following [11] we can thus introduce the Fourier trans-
form with respect to x1 and x2, which is given by

mz(x1, y2] = mz(x1,∞)

−
∫ 1

y2

dx2 m
z(x1, x2)− y2m

z(x1, y2),

mz[y1, y2] = mz(∞, x2]

−
∫ 1

y1

dx1 m
z(x1, y2]− y1m

z(x1, y2]. (44)

One finally finds that the final formula for the replicon
propagator [12] may be obtained with slightly modified
inverse Fourier transform:

gzR[x1, x2] =
1

mz[x1, x2]
, (45)

x1x2
∂2

∂x1∂x2
gzR(x1, x2) =

∂2

∂x1∂x2

1
mz[x1, x2]

,

gzR(z, x2) = gzR(x1, z) = 0. (46)

Equivalently we could write the last equation as

gzR(x1, x2) =
∫ z

x1

dx1

∫ z

x2

dx2
1

x1x2

∂2

∂x1∂x2

1
mz[x1, x2]

·

(47)

The differential relations in the inverse Fourier transform
are preserved, only the second condition which fixes the
value of the inverse Fourier transform in one point is mod-
ified. With these modifications the replicon sector of the
inverse is just the numerical inverse of the matrix M in
Fourier space.

The precise reason for the appearance of these simple
formulae with a strong p-adic flavor is not completely clear
at the present moment. They show the usefulness of the
p-adic formalism. It would be also extremely interesting
to study if the same formalism could be applied to the off
equilibrium dynamics of the kind studied in reference [13].

After completion of this work we received a paper by
V.A. Avetisov, A.H. Bikulov, S.V. Kozyrev [14] where
some similar results are derived.

Appendix A: p-adic numbers

Let us consider a prime number p. Any integer k can be
written in an unique way as

k = pi
∞∑
l=0

alp
l (A.1)

with i ≥ 0, 0 ≤ al ≤ p − 1 and a0 6= 0. The p-adic norm
of such an integer k (i.e. |k|p) is defined as

|k|p = p−i. (A.2)

The p-adic norm of 0 is defined to be equal to zero. The
value of the p-adic norm tells us the number of consecutive

zeros at the end of a number, when it is written in base p.
For a rational number r = a/b, the p-adic norm is defined
as |r|p = |a|p/|b|p.

The properties of the p-adic norm are well studied by
mathematicians, one of the most famous property being
ultrametricity, which states that

|a− b|p ≤ max(|a− c|p, |c− b|p) (A.3)

for any choice of c. This property, which generalises the
statement the sum of two even number is even, can be
proved as follows.

Using the translational invariance of the metric, we
first write the ultrametric inequality in an equivalent way
as

|a+ b|p ≤ max(|a|p, |b|p). (A.4)

If a is a multiple of pi (and not of pi+1), and b is a multiple
of pk, with k ≥ i, it is evident that a + b is a multiple of
pi. Therefore

|a+ b|p ≤ p−i = |a|p = max(|a|p, |b|p). (A.5)

We stress that we have used in a crucial way the fact that
p > 1 for a true prime. (In this paper we make an analytic
continuation to p < 1. In that case, the inequality sign
would be reversed.) A direct consequence of this inequality
is that any triangle is either equilateral or isosceles with
the two largest sides equal. It follows that any point a
inside the p-adic disk centered at o and of radius r, i.e.
such that |a − o|p ≤ r, is also a center of the disk; i.e. if
|b− o|p ≤ r, then also |a− b|p ≤ r.

The whole p-adic field may be constructed starting
from the p-adic rationals by considering the closure of the
rationals with respect to the p-adic norm in the same way
that the real numbers (of the interval 0−1) are constructed
as the closure of the rationals (of the interval 0− 1) with
respect to the usual Euclidean norm.

Closing the rational field with respect to the previously
defined norm one obtains the p-adic field. Continuity of
a p-adic function can be defined as usual. For example a
function f is continuous at the point k if

lim
n→∞

f(kn) = f(k), (A.6)

for any sequence of kn which converges to k in p-adic sense
(i.e. |kn − k|p → 0). The extension of a function from
integers to p-adic numbers is called p-adic interpolation.
Here we do not need to discuss this point any more.

From our point of view a more interesting construction
is the integral over the p-adic integers which can be defined
in an elementary way as

lim
L→∞

1
pL

pL∑
a=1

F (a) =
∫
p

daF (a). (A.7)

There are many well known properties of the p-adic
integral. Here we report some of them, leaving the proof
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to the reader (the lazy reader can found them in any book
on p-adic calculus).

a) The measure of the p-adic sphere of radius p−i cen-
tered around an arbitrary point a (i.e. the measure of all
points such that |a − b|p ≤ p−i) is given by p−i. As far
as the p-adic distance among integers cannot be larger
than 1, the unit sphere coincides with the whole space
and has measure 1.

b) The measure of the p-adic shell of radius p−i cen-
tered around an arbitrary point a (i.e. the measure of all
points such that |a− b|p = p−i) is given by p−i− p−i−1 =
(1− p−1)p−i.

c) The measure of the intersection among two p-adic
shells has rather interesting properties. Let us consider
the intersection of a shell of radius p−i centered around
the point a with a shell of radius p−k centered around
the point b. The measure depends on the distance among
the points a and b, which we assume to be equal to p−j .
Ultrametricity tell us that the measure is zero unless two
among the distances coincide and the two equal distances
are the largest. After some reflection one finds that only
three cases have to be considered.

– We first consider the case i = k < j. Here the ultra-
metricity inequality implies that the two shells coincide
and therefore the measure of the intersection is simply
given by (1− p−1)p−i.

– We now consider the case i = j < k. Here the ultra-
metricity inequality implies that the second shells is
fully contained in the first one and therefore the mea-
sure of the intersection is simply given by (1−p−1)p−k.

– We finally consider the less trivial case is i = j = k. If
one notice that the two spheres of radius p−i centered
in a and b coincide and that the two spheres of radius
p−i−1 centrex in a and b have zero intersection one
finds that the measure of the intersections of the two
shells is given by (1 − 2p−1)p−i,

d) The generalization of the previous arguments allows
us to compute the measure of the intersection of many p-
adic shells by using ultrametricity in a systematic way.
The most significative result is that the intersection of
M shells of radius p−i, whose centrex are all at mutual
distance p−i is given by (1−Mp−1)p−i. The measure be-
comes zero for p = M , which implies that you cannot find
M +1 numbers exactly at the same distance. This last re-
sults is a generalization of the well known statement that
you cannot find three integers (a, b, c) such that the three
differences among them (a− b, b− c, c− a) are all odd.

Using the previous formulae there are a few p-adic in-
tegrals that can be obtained a simple way.

For example let us try to compute

∫
p

da dbF (|a− b|, |b− c|, |c− a|), (A.8)

where for simplicity we denote by |a| the p-adic norm of a.

The integral is c independent and the application of
the previous formulae tells us that the integral is given by∑

i,j,i6=j p
−ip−j(1− p−1)2F (p−k, p−i, p−j)

+
∑
i,j>i p

−ip−j(1− p−1)2F (p−j , p−i, p−i) (A.9)

+
∑
i p
−2i(1−2p−1)(1−p−1)F (p−i, p−i, p−i), (A.10)

where k = min(i, j)

Appendix B: p-adic Fourier transform

Fourier transform on the p-adic integers coincides with the
usual Fourier transform. It can also be defined by analyz-
ing the characters of the additive group. It is more simple
to consider first the case where L is finite and only a finite
number of points is present.

We start by considering the case in which the func-
tion A(x) is defined only for x = 1, · · · , pL (with A(0) =
A(pL)). The Fourier transform is defined as

A[M ] =
1
pL

pL∑
m=1

exp(2πimM)A(m), (B.1)

where M is a rational number of the form jp−L with 0 ≤
j < pL. As usual the Fourier space contains the same
number of points of the original space. In this paper we will
use the square parenthesis to denote Fourier transform.

Let us consider the problem of computing the Fourier
transform of a function which depends only on the p-adic
norm,i.e. A(k) = a(|k|p). We are thus interested in com-
puting

A[M ] =
1
pL

pL∑
m=1

exp(2πi mM)

a(|m|p) =
L−1∑
k=0

a(p−k)Sk[M ] +
1
pL
A(0), (B.2)

where Sk[M ] is the Fourier transform of the p-adic shell
of radius p−k:

Sk[M ] =
1
pL

pL∑
m=1

δ|m|,p−k exp(2πi mM). (B.3)

In order to compute the Fourier transform of the shell,
it may be simpler to firstly compute the Fourier transform
of the p-adic sphere of radius p−k. A simple computation
shows that

Vk[M ] =
1
pL

pL∑
m=1

θ(|m| − p−k) exp(2πi mM)

=
1
pL

pL−k∑
m=1

exp(2πi mMpk)

= p−L exp(2πilpk−L)
exp(2πil)− 1

exp(2πilpk−L)− 1
, (B.4)
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where we used the definition M = lp−L.
It follows that Vk[M ] = 0 unless l = npL−k,

n = 0, 1, · · · , p− 1 and the last passage is no more valid,
because both numerator and denominator are equal to
zero in the final result. We notice that the possible values
of |M | are pj for non negative j. Consequently we find
that Vk[M ] = 0 unless k − j ≤ 0 We also remark that,
as consequence of translational invariance, the Fourier
transform of a function of the p-adic norm, is still a
function of the p-adic norm. We can thus define the
functions a[ ] and sk[ ] as

a[p−j ] = A[M ] ||M|=pj
sk[p−j ] = Sk[M ] ||M|=pj . (B.5)

The reader should notice that the functions a[ ] and sk[ ]
are defined in such a way that it argument is the range
0− 1. It follows that

vk[p−j ] = p−k for k − j ≤ 0

vk[p−j ] = 0 for k − j > 0. (B.6)

As a consequence we find that the Fourier transform
of a spherical shell is given by

sk[p−j] = p−k(1− 1/p) for k − j < 0,

sk[p−j] = −p−k for k − j = 0,

sk[p−j] = 0 for k − j > 0. (B.7)

The final expression for the Fourier transform thus
becomes

a[p−j ] =
∑
k=0,j

p−k(1− 1/p)a(p−k) + p−ja(p−j)

+
1
pL
A(0). (B.8)

It is interesting to note that the last formula the de-
pendence on L is very simple, so that the limit L→∞ can
be trivially done. Moreover most of the properties of the
ordinary Fourier transform, like the theorems concerning
convolutions, are still valid.
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10. M. Mézard, G. Parisi, J. Phys. I France 2, 2231 (1992).
11. C. De Dominicis, I. Kondor, Europhys. Lett. 2, 617 (1986).
12. C. De Dominicis, I. Kondor, J. Phys. Lett. France 46,

L1037 (1985).
13. L.F. Cugliandolo, J. Kurchan. Phys. Rev. Lett. 71, 1

(1993).
14. V.A. Avetisov, A.H. Bikulov, S.V. Kozyrev,

cond-mat/9904360.


